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In this note we improve two results on derivatives of Bernstein polynomials and
smoothness of functions. ,r; 1994 Academic Press. Inc.

The Bernstein polynomials on C[O, 1] are given by

(1 )

In 1985, Z. Ditzian [1] proved for fE C[O, 1], r = 1, 2, 0 < a < r that
under the assumption w,(f, t) = 0(t13) for some fJ> 0

where for r E N

W,(f, t)=suPo<h";;IIILI~flloc,

LlU(x) = L~~o (~)( -1 )kf(x + (r/2 - k)h), if [x - rh/2, x + rh/2] c
[0, 1];

LI~f(x) = 0, otherwise.

Recently, the author [4] extended this result to higher levels of smooth­
ness as

IB~)(f, x)1 ~ Mf(min {n 2
, n/(x(l - x»} )(, - ~)/2 ¢;> wr(f, t) = O( t~) (3)

for rEN, O<a<r, under the assumption w'(f, t)=O(t 13 ) for some fJ>O.
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In this note we improve these two results as follows. Some ideas are from
[I, 3].

THEOREM l. Suppose that fE C[O, 1] satisfies w,(f, t) = O(t fl ) for some
f3 > 0, r E N, then for °< IX < r we have

1B~)(f, x)1 ~ M J (n/(x(1 - x)) )(, - 7)/2~ w,(f, t) = 0(t7). (4)

Proof By [4] it is sufficient for us to prove the inverse part.
Let Bn(f, r, x) be the combination of Bernstein polynomials defined as

r -- 1

(5)
i=O

where n; EN and C; (n) satisfy with an absolute constant C EN

(a) n=no<···<n,_I~Cn,

,-1

(b) L IC;(n)I~C,
;=0
,-1

(c) L Cj(n) = 1,
;=0
r --- I

(d) L Cj(n) n j k = 0, for k = 1, ... , r - 1.

(6)

For these operators we have (see [4])

1 Bn(f, r, x) - f(x)1 ~ Mow,(f, max {lIn, J x( 1 - x)ln} ) (7)

with a positive constant M 0 independent of n E N and x E [0, 1].
Let 0< h ~ t ~ 1/(8r), [x - rhl2, x + rhl2] c (0, 1), n E N. Denote cp(x) =

x(1 - x), d1(n, x, h) = maxO";:b>;'{(CP(x + (r12 - k) h)/n)I/2}, d(n, x, h) =
max {lin, d l (n, x, h)}. Then we have

1.1~f(x)1 ~ 1.1~(f- Bn(f, r, . ))(x)1

+ f··· r:
1
21 B~) (f, r, x+ jtl Yj)1 dYI ···dy,

,-I

i=O

x f '''(/:12 (n/cp (X+jtl Yj)Y'-7)/2 dYI .. ·dy,

~ 2'Mow,(f, d(n, x, h)) + C+ I Mrn(' - 7)/2h7

X (J ... f~:12 ( cP ( x + jtl Yj) ) -- '/2 dy I .•• dY ,) (, - 7)/'

~2'MoW,(f,d(n, x, h))+ C+IMJ(C,+ 1)

xh'( max {(cp(x+(rI2-k)h)ln)1/2})(7-'). (8)
O~k~r



NOTE

Here we have used the following estimate in [4]

f...f2 (<p (x +± Yj)) -,/2 dYl ... dy,
h,2 ] ~ I

~ C,( max {<p(x + (r12 - k) h)} )-,/2 h'
O~k-s;..,
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(9)

with a constant C, > °depending only on r.
Note that d(n + 1, x, h) < d(n, x, h) < 2d(n + 1, x, h). For any <5 E (0, 1/(8r)]

we can choose n E N such that d(n, x, h) ~ <5 < 2d(n, x, h).
If d1(n, x, h) ~ lin, we have from (8)

1L1~f(x)1 ~2'Mow,(f,(5)+2'C+ 1M f (C,+ l)h'<5 a-,.

If dl(n, x, h) < lin, we have n = Ild(n, x, h) ~ 2/<5. Therefore we also have
from (8)

IA~f(x)1 ~ 2'Mow,(f, (5) + C+ I M
f

( C + 1) h'n«( - a)/2( <p(hI2))(a - ,)/2

~ 2'MowAf, (5) + 4'C+ IM
f

( C, + 1) h(' H)/2<5(' - ,)/2.

Combining the above two cases we obtain

where the constants M 1> M 2 > 1 are independent of x, h, t, and <5, which
implies

W,(f, t) ~ M 1w,(f, (5) + M 2(t'Ja-, + t(,H)/2<5(a-,)/2).

Suppose that wAf, h) ~ M 3 h P• Let A = (2M I )I/a + l/P, <5 = tiA. We then
have by induction

~ ...
m-l

~M';w,(f, tA- m )+2M2A,-at' I (M1A-a)k
k~O

~ M 3 M7't fiA -mfi + 2M2A't'(Aa-Ml)-l

~ M 3 t{J2 -m + 2M2A'ta.

By letting m -> 00, we have

Our proof is now complete.
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By the same method as III [1], we can prove a simpler result for
Kantorovich operators

n f(k+ ll/(n+ 1)

KnU,x)= L (n+l) f(t) dt Pn,dx),
k ~ 0 k/(n + 1)

THEOREM 2, For r EN, f E C[O, 1], 0 < 0:: < r, we have

(10)

Remark, A similar result holds for Bernstein-Durrmeyer operators [2].

Remark, I conjecture that a similar improvement can be given for algebraic
polynomials of best approximation.
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