Note

A Note on Derivatives of Bernstein Polynomials*

Ding-Xuan Zhou
Department of Mathematics, Zhejiang University, Advanced Institute of Mathematics, Hangzhou, Zhejiang, 310027, and Institute of Mathematics, Academia Sinica, Beijing 100080, People's Republic of China

Communicated by Dany Leviatan
Received September 6, 1991; accepted March 23, 1993

In this note we improve two results on derivatives of Bernstein polynomials and smoothness of functions. © 1994 Academic Press, Inc.

The Bernstein polynomials on $C[0,1]$ are given by

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} f(k / n) P_{n, k}(x)=\sum_{k=0}^{n} f(k / n)\binom{n}{k} x^{k}(1-x)^{n-k} . \tag{1}
\end{equation*}
$$

In 1985, Z. Ditzian [1] proved for $f \in C[0,1], r=1,2,0<\alpha<r$ that under the assumption $\omega_{r}(f, t)=O\left(t^{\beta}\right)$ for some $\beta>0$

$$
\begin{equation*}
\left|B_{n}^{(r)}(f, x)\right| \leqslant M_{f}\left(\min \left\{n^{2}, n /(x(1-x))\right\}\right)^{(r-\alpha) / 2} \Leftrightarrow \omega_{r}(f, t)=O\left(t^{\alpha}\right), \tag{2}
\end{equation*}
$$

where for $r \in N$

$$
\begin{aligned}
& \omega_{r}(f, t)=\sup _{0<h \leqslant i}\left\|\Delta_{h}^{r} f\right\|_{\infty}, \\
& \Delta_{h}^{r} f(x)=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} f(x+(r / 2-k) h), \text { if }[x-r h / 2, x+r h / 2] \subset
\end{aligned}
$$ [0, 1];

$\Delta_{h}^{r} f(x)=0$, otherwise.
Recently, the author [4] extended this result to higher levels of smoothness as

$$
\begin{equation*}
\left|B_{n}^{(r)}(f, x)\right| \leqslant M_{f}\left(\min \left\{n^{2}, n /(x(1-x))\right\}\right)^{(r-\alpha) / 2} \Leftrightarrow \omega_{r}(f, t)=O\left(t^{\alpha}\right) \tag{3}
\end{equation*}
$$

for $r \in N, 0<\alpha<r$, under the assumption $\omega_{r}(f, t)=O\left(t^{\beta}\right)$ for some $\beta>0$.

* Supported by the National Science Foundation and the Zhejiang Provincial Science Foundation of China, and the Alexander von Humboldt Foundation of Germany.

In this note we improve these two results as follows. Some ideas are from $[1,3]$.

Theorem 1. Suppose that $f \in C[0,1]$ satisfies $\omega_{r}(f, t)=O\left(t^{\beta}\right)$ for some $\beta>0, r \in N$, then for $0<\alpha<r$ we have

$$
\begin{equation*}
\left|B_{n}^{(r)}(f, x)\right| \leqslant M_{f}(n /(x(1-x)))^{(r-x) / 2} \Leftrightarrow \omega_{r}(f, t)=O\left(t^{\alpha}\right) . \tag{4}
\end{equation*}
$$

Proof. By [4] it is sufficient for us to prove the inverse part.
Let $B_{n}(f, r, x)$ be the combination of Bernstein polynomials defined as

$$
\begin{equation*}
B_{n}(f, r, x)=\sum_{i=0}^{r-1} C_{i}(n) B_{n_{i}}(f, x) \tag{5}
\end{equation*}
$$

where $n_{i} \in N$ and $C_{i}(n)$ satisfy with an absolute constant $C \in N$
(a) $n=n_{0}<\cdots<n_{r-1} \leqslant C n$,
(b) $\sum_{i=0}^{r-1}\left|C_{i}(n)\right| \leqslant C$,
(c) $\sum_{i=0}^{r-1} C_{i}(n)=1$,
(d) $\quad \sum_{i=0}^{r-1} C_{i}(n) n_{i}^{-k}=0, \quad$ for $\quad k=1, \cdots, r-1$.

For these operators we have (see [4])

$$
\begin{equation*}
\left|B_{n}(f, r, x)-f(x)\right| \leqslant M_{0} \omega_{r}(f, \max \{1 / n, \sqrt{x(1-x) / n}\}) \tag{7}
\end{equation*}
$$

with a positive constant M_{0} independent of $n \in N$ and $x \in[0,1]$.
Let $0<h \leqslant t \leqslant 1 /(8 r),[x-r h / 2, x+r h / 2] \subset(0,1), n \in N$. Denote $\varphi(x)=$ $x(1-x), d_{1}(n, x, h)=\max _{0 \leqslant k \leqslant r}\left\{(\varphi(x+(r / 2-k) h) / n)^{1 / 2}\right\}, d(n, x, h)=$ $\max \left\{1 / n, d_{1}(n, x, h)\right\}$. Then we have

$$
\begin{align*}
\left|\Delta_{h}^{r} f(x)\right| \leqslant & \left|\Delta_{h}^{r}\left(f-B_{n}(f, r, \cdot)\right)(x)\right| \\
& +\int \cdots \int_{-h / 2}^{h / 2}\left|B_{n}^{(r)}\left(f, r, x+\sum_{j=1}^{r} y_{j}\right)\right| d y_{1} \cdots d y_{r} \\
\leqslant & 2^{r} M_{0} \omega_{r}(f, d(n, x, h))+\sum_{i=0}^{r-1}\left|C_{i}(n)\right| M_{f} \\
& \times \int \cdots \int_{-h / 2}^{h / 2}\left(n_{i} / \varphi\left(x+\sum_{j=1}^{r} y_{j}\right)\right)^{(r-\alpha) / 2} d y_{1} \cdots d y_{r} \\
\leqslant & 2^{r} M_{0} \omega_{r}(f, d(n, x, h))+C^{r+1} M_{f} n^{(r-\alpha) / 2} h^{\alpha} \\
& \times\left(\int \cdots \int_{-h / 2}^{h / 2}\left(\varphi\left(x+\sum_{j=1}^{r} y_{j}\right)\right)^{-r / 2} d y_{1} \cdots d y_{r}\right)^{(r-\alpha) / r} \\
\leqslant & 2^{r} M_{0} \omega_{r}(f, d(n, x, h))+C^{r+1} M_{f}\left(C_{r}+1\right) \\
& \times h^{r}\left(\max _{0 \leqslant k \leqslant r}\left\{(\varphi(x+(r / 2-k) h) / n)^{1 / 2}\right\}\right)^{(\alpha-r)} . \tag{8}
\end{align*}
$$

Here we have used the following estimate in [4]

$$
\begin{align*}
& \int \cdots \int_{-h / 2}^{h / 2}\left(\varphi\left(x+\sum_{j=1}^{r} y_{j}\right)\right)^{-r / 2} d y_{1} \cdots d y_{r} \\
& \quad \leqslant C_{r}\left(\max _{0 \leqslant k \leqslant r}\{\varphi(x+(r / 2-k) h)\}\right)^{-r / 2} h^{r} \tag{9}
\end{align*}
$$

with a constant $C_{r}>0$ depending only on r.
Note that $d(n+1, x, h)<d(n, x, h)<2 d(n+1, x, h)$. For any $\delta \in(0,1 /(8 r)]$ we can choose $n \in N$ such that $d(n, x, h) \leqslant \delta<2 d(n, x, h)$.

If $d_{1}(n, x, h) \geqslant 1 / n$, we have from (8)

$$
\left|A_{h}^{r} f(x)\right| \leqslant 2^{r} M_{0} \omega_{r}(f, \delta)+2^{r} C^{r+1} M_{f}\left(C_{r}+1\right) h^{r} \delta^{\alpha-r}
$$

If $d_{1}(n, x, h)<1 / n$, we have $n=1 / d(n, x, h) \leqslant 2 / \delta$. Therefore we also have from (8)

$$
\begin{aligned}
\left|\Delta_{h}^{r} f(x)\right| & \leqslant 2^{r} M_{0} \omega_{r}(f, \delta)+C^{r+1} M_{f}\left(C_{r}+1\right) h^{r} n^{(r-x) / 2}(\varphi(h / 2))^{(\alpha-r) / 2} \\
& \leqslant 2^{r} M_{0} \omega_{r}(f, \delta)+4^{r} C^{r+1} M_{f}\left(C_{r}+1\right) h^{(r+\alpha) / 2} \delta^{(x-r) / 2}
\end{aligned}
$$

Combining the above two cases we obtain

$$
\left|A_{h}^{r} f(x)\right| \leqslant M_{1} \omega_{r}(f, \delta)+M_{2}\left(t^{r} \delta^{\alpha-r}+t^{(r+\alpha) / 2} \delta^{(x-r) / 2}\right),
$$

where the constants $M_{1}, M_{2}>1$ are independent of x, h, t, and δ, which implies

$$
\omega_{r}(f, t) \leqslant M_{1} \omega_{r}(f, \delta)+M_{2}\left(t^{r} \delta^{\alpha-r}+t^{(r+\alpha) / 2} \delta^{(\alpha-r) / 2}\right)
$$

Suppose that $\omega_{r}(f, h) \leqslant M_{3} h^{\beta}$. Let $A=\left(2 M_{1}\right)^{1 / \alpha+1 / \beta}, \delta=t / A$. We then have by induction

$$
\begin{aligned}
\omega_{r}(f, t) & \leqslant M_{1} \omega_{r}(f, t / A)+2 M_{2} A^{r-\alpha} t^{\alpha} \\
& \leqslant \cdots \\
& \leqslant M_{1}^{m} \omega_{r}\left(f, t A^{-m}\right)+2 M_{2} A^{r-\alpha} t^{\alpha} \sum_{k=0}^{m-1}\left(M_{1} A^{-\alpha}\right)^{k} \\
& \leqslant M_{3} M_{1}^{m} t^{\beta} A^{-m \beta}+2 M_{2} A^{r} t^{\alpha}\left(A^{\alpha}-M_{1}\right)^{-1} \\
& \leqslant M_{3} t^{\beta} 2^{-m}+2 M_{2} A^{r} t^{\alpha} .
\end{aligned}
$$

By letting $m \rightarrow \infty$, we have

$$
\omega_{r}(f, t) \leqslant 2 M_{2} A^{r} t^{x}
$$

Our proof is now complete.

By the same method as in [1], we can prove a simpler result for Kantorovich operators

$$
\begin{equation*}
K_{n}(f, x)=\sum_{k=0}^{n}(n+1) \int_{k /(n+1)}^{(k+1) /(n+1)} f(t) d t P_{n, k}(x) \tag{10}
\end{equation*}
$$

Theorem 2. For $r \in N, f \in C[0,1], 0<\alpha<r$, we have

$$
\left|K_{n}^{(r)}(f, x)\right| \leqslant M_{f}^{\prime}(n /(x(1-x)))^{(r-x) / 2} \Leftrightarrow \omega_{r}(f, t)=O\left(t^{x}\right) .
$$

Remark. A similar result holds for Bernstein-Durrmeyer operators [2].
Remark. I conjecture that a similar improvement can be given for algebraic polynomials of best approximation.

Acknowledgment

The author thanks Professor Zhu-Rui Guo for his critical reading of the manuscript and his kind encouragement.

References

1. Z. Ditzian, Derivatives of Bernstein polynomials and smoothness, Proc. Amer. Math. Soc. 93 (1985), 25-31.
2. Z. Ditzian and K. Ivanov, Bernstein type operators and their derivatives, J. Approx. Theory 56 (1989), 72-90.
3. Z. Ditzian and V. Totik, Moduli of smoothness, in "Springer Series in Computational Mathematics," Vol. 9, Springer-Verlag, Berlin/Heidelberg/New York, 1987.
4. Ding-Xuan Zhou, On smoothness characterized by Bernstein type operators, submitted for publication.
